defzero_pad(X,pad):"""
Pad with zeros all images of the dataset X. The padding is applied to the height and width of an image, as illustrated in Figure 1.
Argument:
X -- python numpy array of shape (m, n_H, n_W, n_C) representing a batch of m images
pad -- integer, amount of padding around each image on vertical and horizontal dimensions
Returns:
X_pad -- padded image of shape (m, n_H + 2*pad, n_W + 2*pad, n_C)
"""X_pad=np.pad(X,((0,0),(pad,pad),(pad,pad),(0,0)),'constant',constant_values=0)returnX_pad
2.卷积层
**Figure 1** </u> : **Dynamic demonstration of convolution** </center></caption>
我们先建立一个卷积的**单步函数,也就是只进行一次卷积中的一次计算**。函数分为三部分:接收输入,应用过滤器,进行输出。
**(1) 实现 conv_single_step函数:**
```python
def conv_single_step(a_slice_prev, W, b):
"""
Apply one filter defined by parameters W on a single slice (a_slice_prev) of the output activation of the previous layer.
Arguments:
a_slice_prev -- slice of input data of shape (f, f, n_C_prev)
W -- Weight parameters contained in a window - matrix of shape (f, f, n_C_prev)
b -- Bias parameters contained in a window - matrix of shape (1, 1, 1)
Returns:
Z -- a scalar value, result of convolving the sliding window (W, b) on a slice x of the input data
"""
s = np.multiply(a_slice_prev,W)
Z = np.sum(s)
Z = Z + float(b) #将b转化为浮点数,将Z转成标量.
return Z
```
下面基于上面的单步函数,实现一次卷积。输入值有: A_prev(前一层的值),过滤器F的权重(用W表示),每个过滤操作都有的不同的偏移量b,还有包含了stride(步幅)和padding(填充)的 hyperparameters dictionary(参数词典)。
**(2) 实现conv_forward函数:**
假定我们的过滤器大小为2×2×n,我们用vert_start、vert_end、horiz_start 和 horiz_end来准确定义每一个2×2 slice 的位置,如下图所示:
**Figure 2** </u> : **Definition of a slice using vertical and horizontal start/end (with a 2x2 filter)** This figure shows only a single channel. </center></caption>
对于每个卷积层的输出,有如下公式计算n_H、n_W和N_c的shape。
我们不必担心矢量化, 只用 for 循环就可以实现一切。
```python
def conv_forward(A_prev, W, b, hparameters):
"""
Implements the forward propagation for a convolution function
Arguments:
A_prev -- output activations of the previous layer, numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev)
W -- Weights, numpy array of shape (f, f, n_C_prev, n_C)
b -- Biases, numpy array of shape (1, 1, 1, n_C)
hparameters -- python dictionary containing "stride" and "pad"
Returns:
Z -- conv output, numpy array of shape (m, n_H, n_W, n_C)
cache -- cache of values needed for the conv_backward() function
"""
# Retrieve dimensions from A_prev's shape
(m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape
# Retrieve dimensions from W's shape
(f, f, n_C_prev, n_C) = W.shape
# Retrieve information from "hparameters"
stride = hparameters['stride']
pad = hparameters['pad']
# Compute the dimensions of the CONV output volume using the formula given above.
n_H = int((n_H_prev - f +2 * pad)/stride) +1
n_W = int((n_W_prev - f +2 * pad)/stride) +1
# Initialize the output volume Z with zeros.
Z = np.zeros((m , n_H, n_W, n_C))
# Create A_prev_pad by padding A_prev
A_prev_pad = zero_pad(A_prev, pad)
for i in range(m): # loop over the batch of training examples
a_prev_pad = A_prev_pad[i] # Select ith training example's padded activation
for h in range(n_H): # loop over vertical axis of the output volume
for w in range(n_W): # loop over horizontal axis of the output volume
for c in range(n_C): # loop over channels (= #filters) of the output volume
# Find the corners of the current "slice"
vert_start = h*stride
vert_end = vert_start + f
horiz_start =w*stride
horiz_end = horiz_start + f
# Use the corners to define the (3D) slice of a_prev_pad (See Hint above the cell). (≈1 line)
a_slice_prev = a_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :]
# Convolve the (3D) slice with the correct filter W and bias b, to get back one output neuron. (≈1 line)
Z[i, h, w, c] = conv_single_step(a_slice_prev, W[...,c], b[...,c])
# Making sure your output shape is correct
assert(Z.shape == (m, n_H, n_W, n_C))
# Save information in "cache" for the backprop
cache = (A_prev, W, b, hparameters)
return Z, cache
```
卷积层应该也包含一个激活函数,实现如下:
```python
# Convolve the window to get back one output neuron
Z[i, h, w, c] = ...
# Apply activation
A[i, h, w, c] = activation(Z[i, h, w, c])
```
##### 3.池化层
其实,池化层的一个作用是:通过最大池化方法来达到“视角不变性”。不变性意味着,如果我们略微调整输入,输出仍然是一样的。换句话说,在输入图像上,当我们稍微变换一下我们想要检测的对象时,由于最大池化的存在,网络活动(神经元的输出)将保持不变,网络仍然能检测到对象。
但是从另一个角度说,上述机制并不怎么好,因为最大池丢失了有价值的信息,也没有编码特征之间的相对空间关系。
池化方法一般来说通用的有两种,Max Pool和Average Pool,而Max Pool更加常用。输出的n_H、n_W以及n_C公式如下:
```python
def pool_forward(A_prev, hparameters, mode = "max"):
"""
Implements the forward pass of the pooling layer
Arguments:
A_prev -- Input data, numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev)
hparameters -- python dictionary containing "f" and "stride"
mode -- the pooling mode you would like to use, defined as a string ("max" or "average")
Returns:
A -- output of the pool layer, a numpy array of shape (m, n_H, n_W, n_C)
cache -- cache used in the backward pass of the pooling layer, contains the input and hparameters
"""
# Retrieve dimensions from the input shape
(m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape
# Retrieve hyperparameters from "hparameters"
f = hparameters["f"]
stride = hparameters["stride"]
# Define the dimensions of the output
n_H = int(1 + (n_H_prev - f) / stride)
n_W = int(1 + (n_W_prev - f) / stride)
n_C = n_C_prev
# Initialize output matrix A
A = np.zeros((m, n_H, n_W, n_C))
for i in range(m): # loop over the training examples
for h in range(n_H): # loop on the vertical axis of the output volume
for w in range(n_W): # loop on the horizontal axis of the output volume
for c in range (n_C): # loop over the channels of the output volume
# Find the corners of the current "slice"
vert_start = h*stride
vert_end = vert_start + f
horiz_start =w*stride
horiz_end = horiz_start + f
# Use the corners to define the current slice on the ith training example of A_prev, channel c.
a_prev_slice = A_prev[i, vert_start:vert_end, horiz_start:horiz_end, c]
# Compute the pooling operation on the slice. Use an if statment to differentiate the modes. Use np.max/np.mean.
if mode == "max":
A[i, h, w, c] = np.max(a_prev_slice)
elif mode == "average":
A[i, h, w, c] = np.mean(a_prev_slice)
# Store the input and hparameters in "cache" for pool_backward()
cache = (A_prev, hparameters)
# Making sure your output shape is correct
assert(A.shape == (m, n_H, n_W, n_C))
return A, cache
```
##### 4.反向传播
在现代的深层学习框架中, 我们只需要实现前向传递, 而深度学习框架负责向后传递, 因此大多数深学习的工程师不必费心处理向后传递的细节。卷积网络的向后传递是复杂的。但是, 如果你想要去实现,可以通过下一节的内容, 去了解什么 Backprop 在一个卷积网络中是怎么个情况。